השוואה בין גורמים שונים היא חלק מחיי היומיום שלנו. במתמטיקה השוואות מתורגמות למשוואות ולאי-שוויונות המקבלים ייצוגים שונים: מילולי, גרפי, מספרי, ואלגברי.
בפתרון שאלה מילולית המתארת השוואה, נדרשת אוריינות מתמטית. הפותר צריך להבין את הנקרא, ולדעת לתרגם את התיאור המילולי לייצוג מתמטי אחר (גרפי, מספרי או אלגברי) אשר יוביל לתשובה.
התמודדות עם שאלות מילוליות המתארות אי-שוויון, דורשת הבנה של דקויות מילוליות. אוצר המונחים הלשוניים המתארים מצבי אי-שוויון רבים ומגוונים. ההבדלים הדקים בין מושגי האי-שוויון דורשים הבנה מעמיקה של הטקסט. למשל, המשפט "לדני יש 8 גולות לכל היותר" מתורגם ל- והמשפט "לדני יש יותר מ-8 גולות" מתורגם ל-. ה"כיוון" של סימן האי-שוויון שונה וגם האי-שוויון הראשון הוא אי-שוויון חלש(מאפשר גם את השוויון עצמו) בעוד השני הוא אי-שוויון חזק (אינו מאפשר את השוויון עצמו).
ביחידה זו נתמקד במשמעות הלוגית של אי-שוויון ובפתרון שאלות מילוליות המתארות אי-שוויון:
- נעסוק בדקויות ההבחנה בין המונחים המתארים אי-שוויונות.
- נבדיל בין מונחים המאפשרים שימוש באי-שוויון חלש או חזק.
- בפתרון השאלות נשתמש, במידת האפשר, בדרכים שונות ובייצוגים מגוונים.
סדנה 1 - בעיות מילוליות ואי שוויונות
סדנה 2 - פתרון בעיות מילוליות עם איש וויונות בעזרת גרפים