תיאור: הפעילות עוסקת הכרות עם פונקציית הערך המוחלט ועם ההזזות שלה במקביל לציר ה- y. הגרף של פונקציית הערך המוחלט מורכב משתי קרניים – שני חלקים של קווים ישרים. על כן מתאים לגשר באמצעותו בין הפונקציה הקווית לפונקציה הריבועית. כאן אפשר להתחיל לדון במושגים: תחום עליה ותחום ירידה, ונקודת מינימום. הזזות, מתיחות ושיקוף ביחס לציר ה-x יובילו לגרפים שיהוו בסיס טוב להזזות, מתיחות ושיקוף ביחס לציר ה-x עבור הפונקציות הריבועיות. לפעילות זו יש פעילות המשך, העוסקת בהזזות במקביל לציר ה-x ומשלבת את שתי ההזזות.
לתלמיד בערבית دالّة القيمة المطلقة- الإزاحة العموديّة
תיאור: הפעילות עוסקת בקשר שבין ההצגה הגרפית של הפונקציה הריבועית לבין משוואות שניתן לפתור תוך התבוננות בגרף. מתאימה לשילוב לאחר ההכרות עם הצורה הקודקודית ועם הצורה הכללית של פונקציה ריבועית, אך טרם הצגת הדרכים האלגבריות לפתרון משוואה ריבועית. הדיון הוא במספר פתרונות, או בפתרונות שניתן להסיק מהצגה גרפית נתונה ומתכונות הפרבולה.
לתלמיד בערבית النّقاط الصفريّة للدالّة التربيعيّة
תיאור: הפעילות עוסקת בהזזה האופקית של גרף הפונקציה ומתאימה לשילוב בהוראה לאחר ההיכרות עם משפחת הפונקציות ועם ההזזה האנכית. השאלה האחרונה בפעילות עוסקת בשילוב שתי ההזזות יחד: האנכית והאופקית. הפעילות מגשרת בין הפונקציה הקווית לפונקציה הריבועית ומציגה את מושג ההזזה על פונקציה פשוטה. באופן זה מורחב אוסף הפונקציות עליהן מבצעים את פעולות ההזזה ומוטמע מושג ההזזה במנותק מהפונקציה הריבועית.
לתלמיד בערבית دالّة القيمة المطلقة- إزاحة أفقيّة
תיאור: הפעילות עוסקת בפונקציות החזקה עם מעריך טבעי, והיא אחת מתוך אוסף פעילויות שמפגישות את התלמידים עם משפחות שונות של פונקציות, במטרה להכיר תכונות משותפות שיש לפונקציות במשפחות השונות, ולהעשיר את השפה המתמטית המאפשרת גם לתאר את תכונות הפונקציות, וגם להצדיקן לא על סמך מראה עיניים בלבד. ההיכרות עם פונקציות החזקה חשובה במיוחד, היות והן מהוות בסיס ללימודי האנליזה בכיתה יוד. לפעילות מצורף יישומון, שמציג את שתי הקבוצות של הפונקציות במשפחה זו לצד זו.
לתלמיד בערבית الدّوال الأسّيّة قوى زوجيّة وفرديّةقوى زوجيّة وفرديّة
תיאור: הפעילות עוסקת ביחסי שטחים של משולשים בעלי גובה משותף. פעילות זו היא חלק מסדרת פעילויות בנושא יחס ופרופורציה במטרה לפתח בהדרגה כישורים שיהיו דרושים לתלמידים בחטיבה העליונה.